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Abstract

In this paper we consider the statistical analysis of multivariate multiple nonlinear regression models with correlated errors,
using Finite Fourier Transforms. Consistency and asymptotic normality of the weighted least squares estimates are established
under various conditions on the regressor variables. These conditions involve different types of scalings, and the scaling factors are
obtained explicitly for various types of nonlinear regression models including an interesting model which requires the estimation
of unknown frequencies. The estimation of frequencies is a classical problem occurring in many areas like signal processing,
environmental time series, astronomy and other areas of physical sciences. We illustrate our methodology using two real data sets
taken from geophysics and environmental sciences. The data we consider from geophysics are polar motion (which is now widely
known as “Chandlers Wobble”), where one has to estimate the drift parameters, the offset parameters and the two periodicities
associated with elliptical motion. The data were first analyzed by Arato, Kolmogorov and Sinai who treat it as a bivariate time series
satisfying a finite order time series model. They estimate the periodicities using the coefficients of the fitted models. Our analysis
shows that the two dominant frequencies are 12 h and 410 days. The second example, we consider is the minimum/maximum
monthly temperatures observed at the Antarctic Peninsula (Faraday/Vernadsky station). It is now widely believed that over the past
50 years there is a steady warming in this region, and if this is true, the warming has serious consequences on ecology, marine life,
etc. as it can result in melting of ice shelves and glaciers. Our objective here is to estimate any existing temperature trend in the data,
and we use the nonlinear regression methodology developed here to achieve that goal.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

One of the classical problems in statistical analysis is to find a suitable relationship between a response variable Yt and
a set of p regressor variables x1,x2, . . . , xp under suitable assumptions on the random errors. The usual assumption is
that the errors are independent, identically distributed random variables. This has been later generalized to the case when
the errors are correlated. In many situations the response function is a nonlinear function in both regressor variables and
the parameters. Asymptotic properties of the parameter estimates are now well known (see for example Jennrich, 1969).
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The results were later extended to the case of nonlinear multiple regression with correlated errors by Hannan (1971)
when the stationary errors satisfy a certain linear representation. The methods used by Hannan are frequency domain
oriented and depend on the properties of Finite Fourier Transforms (FFT). The methodology is dependent on making
certain assumptions on regressor variables, now known as Grenander and Rosenblatt’s conditions (see Grenander
and Rosenblatt, 1957). The conditions depend on the nature of nonlinearity of the parameters in the regressor variables.
The central limit theorems associated with the estimates obtained and the scaling factors required also depend on these
functions. If the nonlinear parameters to be estimated are frequencies, even though the model looks linear, one has
to impose a different set of conditions. A brief discussion of this important aspect was discussed by Hannan (1971).
Robinson (1972) extended the results of Hannan to the multivariate nonlinear regression case, when the regression
matrix is not of full rank and the parameters satisfy some constraints. The methods and the asymptotic theory of
Robinson does not include the situation when the parameters are frequencies and also the variance–covariance matrices
of the estimated parameters given are not explicit enough for computational purposes. In this paper our objective is to
consider both linear models and nonlinear models as well as a mixture of both. We state suitable scaling factors in each
case for establishing asymptotic properties of the estimates. We refer to a recent paper by Subba Rao and Terdik (2006),
for more supplementary details. A multivariate convolution model somewhat similar to our model was considered by
Shumway et al. (1999). We propose a frequency domain approach which we believe is extremely useful in situations
when the marginal distributions of the elements of the random vector have quite different distributions as in the case of
minimum and maximum temperatures (which could have extreme value distributions with different sets of parameters)
considered in this paper.

The minimum contrast estimates (Guyon, 1995; Heyde, 1997) of the unknown parameters are constructed in frequency
domain. The mixed model containing the linear regression and linear combinations of the nonlinear regressions is also
considered in detail.

To illustrate our methods we consider two important examples. One is the analysis of time series of Polar motion
widely described in geophysics as the “Chandlers Wobble”. One of the first papers dealing with the statistical analysis
of these data was by Arato et al. (1962) who estimated the parameters of the polar motion, such as offset (trend),
drift and periodicities. Using recent high resolution GPS data it is shown in this paper that besides the well-known
Chandler period of 410 days, a secondary period of 12 h is also present. The motion of the pole (as a function of
time) can be described by two polar coordinates which are strongly correlated. This motion is very similar to that of
a rotating “spinning top”—a children’s toy. The second example we consider is the minimum and maximum monthly
temperatures (and ozone levels) observed at a station in theAntarctic Peninsula and these data are considered to illustrate
our methodology where the regression model is linear. For a different analysis of these temperature data, we refer to a
recent paper by Hughes et al. (2006), referred to as HSS from now on.

1.1. The statistical model and assumptions

Consider a d-dimensional observational vector Y t , the random disturbances Zt and the function Xt(ϑ0) satisfying
the usual model

Y t = Xt(ϑ0) + Zt . (1)

The function Xt(ϑ) can be a nonlinear function of both regressor variables and the p-dimensional parameter vector
ϑ ∈ � ⊂ Rp, while Zt is a d-dimensional stationary correlated time series. Here ϑ0 is the true parameter to be
estimated. The set � of admissible parameters ϑ is defined by a number of possibly nonlinear equations, see Robinson
(1972) for more details. We shall assume that the set � is chosen suitably in each case. For convenience we consider
Xt(ϑ) as a regressor vector, although in particular cases we may have to separate the regressors and the parameters.
The regressor variables may depend on the parameters nonlinearly. One specific model, we have in mind, for Xt(ϑ)

can be written in the form

Xt(ϑ) = B1X1,t + B2X2,t (�).

This can be considered as a mixed model since it is both linear as well as nonlinear in the parameters at the same time.
The parameter vector ϑ contains both B1 and B2 and also the vector �. The admissible set � is the union of three
subsets. There is no restriction on the entries of matrix B1 with size d × p1. However, the matrix B2 and the vector
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� may have to satisfy some identifiability conditions. The parameter � is identified unless some particular entries of
B2 annihilate an entry, say �k , from the model. If � are set of frequencies to be estimated we may have to put some
constraints so that they lie within a compact set.

We assume that Zt is a stationary linear processes, and has the moving average representation

Zt =
∞∑

k=−∞
AkW t−k where

∞∑
k=−∞

Tr(AkCW A∗
k) < ∞.

Here we assume that Wt is a sequence of independent identically distributed random vectors (i.i.d. vectors) and
CW = Var Wt , is non-singular We also assume that Zt has a (element by element) piecewise continuous spectral
density matrix SZ(�), as in Hannan (1970) and Brillinger (2001). The model is feedback free, i.e. Zt does not depend
on Xt .

1.2. The conditions on regressors and regression spectrum

Consider the regressor function Xt(ϑ) which is a function of t which may depend nonlinearly on parameters ϑ
belonging to the compact set �. It is widely known that the Grenander’s conditions (see Grenander, 1954; Grenander
and Rosenblatt, 1957) for the regressor Xt(ϑ) are sufficient and in some situations (Wu, 1981) also necessary to establish
the consistency of the least squares (LS) estimators. They are as follows. Let

‖Xk,t (ϑ)‖2
T =

T∑
t=1

X2
k,t (ϑ)

denote the Euclidean norm of the kth regressor of the vector X(ϑ).

Condition 1 (G1). For all k = 1, 2, . . . , d,

lim
T →∞ ‖Xk,t (ϑ)‖2

T = ∞.

Condition 2 (G2). For all k = 1, 2, . . . , d,

lim
T →∞

X2
k,T +1(ϑ)

‖Xk,t (ϑ)‖2
T

= 0.

Without any loss of generality we can assume that the regressor Xt(ϑ) is scaled: ‖Xk,t (ϑ)‖2
T � T , for all k, see

Definition 15 and a note therein. Define the following matrices. Let for each integer h ∈ [0, T ),

ĈX,T (h, ϑ1, ϑ2) = 1

T

T −h∑
t=1

Xt+h(ϑ1)X
T
t (ϑ2),

ĈX,T (−h, ϑ1, ϑ2) = ĈT
X,T (h, ϑ2, ϑ1). (2)

Whenever ϑ1 =ϑ2 =ϑ, throughout our paper we use the shorter notation ĈX,T (h, ϑ1, ϑ2)|ϑ1=ϑ2=ϑ = ĈX,T (h, ϑ). The
next condition we impose essentially means that the regressor Xt(ϑ) is changing “slowly” in the following sense. For
each integer h, ‖Xk,t (ϑ)‖2

T +h � T .

Condition 3 (G3). For each integer h,

lim
T →∞ ĈX,T (h, ϑ) = CX(h, ϑ).

Condition 4 (G4). CX(0, ϑ) is non-singular.
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One can use the Bochner’s theorem for the limit CX such that

CX(h, ϑ) =
∫ 1/2

−1/2
exp(i 2��h) d F(�, ϑ),

where F is a spectral distribution matrix function of the regressors (from now on abbreviated, SDFR) whose entries are
of bounded variations. The SDFR can be obtained as the limit of the vector of periodogram ordinates (see Brillinger,
2001 for details). We now introduce the discrete Fourier transform

dX,T (�, ϑ) =
T −1∑
t=0

Xt(ϑ)z−t , z = exp(2�i �), −1

2
�� <

1

2
,

and the periodogram matrix of the non-random vector Xt(ϑ) given by

IX,T (�, ϑ1, ϑ2) = 1

T
dX,T (�, ϑ1)d

∗
X,T (�, ϑ2),

where ∗ denotes the transpose and complex conjugate. Both dX,T and IX,T may depend on the parameters. We have
the well-known relation

ĈX,T (h, ϑ1, ϑ2) =
∫ 1/2

−1/2
exp(i 2��h)IX,T (�, ϑ1, ϑ2) d�,

IX,T (�, ϑ1, ϑ2) =
∑

|h|<T

ĈX,T (h, ϑ1, ϑ2) e−i 2��h,

ITX,T (�, ϑ1, ϑ2) = IX,T (�, ϑ2, ϑ1)

between ĈX,T and the periodogram. Definition (2), which Jennrich (1969) calls tail product, reminds one of the
empirical cross-covariance matrix of a stationary time series, usually scaled by 1/T (which might not work in some
particular cases of the regressors without some additional scaling). This implies that the series Xt does not belong to
L2, i.e.

lim
T →∞ ‖dX,T (�, ϑ)‖2 = ∞.

For the univariate case, we refer to the classical books of Grenander and Rosenblatt (1957), Anderson (1971), and for
vector-valued case, to Hannan (1970) and Brillinger (2001).

Now, define the empirical SDFR FT as

FT (�, ϑ1, ϑ2) =
∫ �

0
IX,T (�, ϑ1, ϑ2) d�,

then it follows from the Grenander’s conditions stated above that F is the weak limit of FT and this is the condition we
really need later. See also Ibragimov and Rozanov (1978, Chapter 7).

Condition 5 (I-R). The matrix function FT converges to F weakly. More precisely, for each continuous bounded
function �(�) the limit

lim
T →∞

∫ 1/2

−1/2
�(�) dFT (�, ϑ1, ϑ2) =

∫ 1/2

−1/2
�(�) dF(�, ϑ1, ϑ2), (3)

holds.

Note, if FT converges to F weakly then (3) is valid not only for continuous bounded functions but also for some
wider classes of functions such as piecewise continuous functions having discontinuity at finitely many �-points with
F-measure zero, dF(�, ϑ1, ϑ2) = 0. The matrix function F is Hermite symmetric metric since FT satisfies following:

FT
T (�, ϑ1, ϑ2) = FT (�, ϑ2, ϑ1) = FT (−�, ϑ2, ϑ1).
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The regressor Xt(ϑ) depends on the parameter ϑ ∈ �, therefore we require all Grenander’s conditions to hold
uniformly in ϑ.

1.3. The objective function

The frequency domain analysis has a number of advantages (see Brillinger, 2001). As we stated earlier our method
depends on using FFT of model (1). The FFT is technically simple to use. We take the FFTs both sides of (1) at Finite
Fourier frequencies �k = k/T ∈ [− 1

2 , 1
2 ], k = 0, ±1, . . . ,±T1, where T1 = Int[(T − 1)/2], only). We obtain by taking

FFT both sides

dY,T (�) = dX,T (�, ϑ0) + dZ,T (�).

The parameter vector ϑ0 denotes the true unknown value and we would like to adjust the regressor Xt(ϑ) in the model
such that the distance

dY,T (�) − dX,T (�, ϑ) = dX,T (�, ϑ0) − dX,T (�, ϑ) + dZ,T (�) (4)

is minimum in some sense. The Euclidean distance, for instance, is

T1∑
k=−T1

‖dY,T (�k) − dX,T (�k, ϑ)‖2 =
T1∑

k=−T1

‖dX,T (�k, ϑ0) − dX,T (�k, ϑ) + dZ,T (�k)‖2,

which by Parseval’s Theorem, actually corresponds to the sum of squares

T −1∑
t=0

‖Y t − Xt(ϑ)‖2 =
T −1∑
t=0

‖Xt(ϑ0) − Xt(ϑ) + Zt‖2.

Therefore, minimizing either of the above two expressions leads to the same result. The Zt itself is not necessarily an
i.i.d. sequence hence we are facing a generalized nonlinear regression problem with stationary residuals. The quadratic
function we minimize, somewhat parallel to that suggested by Hannan (1971) for scalar valued case, is

QT (ϑ) = 1

T 2

T1∑
k=−T1

(dY ,T (�k) − dX,T (�k, ϑ))∗�(�k)(dY ,T (�k) − dX,T (�k, ϑ))

= 1

T

T1∑
k=−T1

Tr(IY ,T (�k)�(�k)) + Tr(IX,T (�k, ϑ)�(�k)) − 2 Re Tr(IY ,X,T (�k, ϑ)�(�k)), (5)

where �(�k) is a series of matrix weights, originated from a continuous, Hermitian matrix function �, satisfying
�(�)�0. Eq. (4) can be rewritten as

QT (ϑ) = 1

T

T1∑
k=−T1

Tr(IX,T (�k, ϑ0)�(�k)) + Tr(IX,T (�k, ϑ)�(�k)) + Tr(IZ,T (�k)�(�k))

+ 2

T

T1∑
k=−T1

Tr([IX,Z,T (�k, ϑ0) − IX,Z,T (�k, ϑ)]�(�k)) − Tr(IX,T (�k, ϑ, ϑ0)�(�k)).

The proof of IX,Z,T (�k, ϑ) → 0, a.s. and uniformly in ϑ is given by Robinson (1972, Lemma 1). Now, suppose
Conditions I-R, (or G1–G4) hold and we take the limit of the above to obtain

Q(ϑ) = lim
T →∞ QT (ϑ)

=
∫ 1/2

−1/2
Tr(�(�) d[F(�, ϑ0) + F(�, ϑ) − F(�, ϑ0, ϑ) − F(�, ϑ, ϑ0)]) +

∫ 1/2

−1/2
Tr[SZ(�)�(�)] d�

= R(ϑ, ϑ0) +
∫ 1/2

−1/2
Tr[�(�)SZ(�)] d�. (6)
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The function

R(ϑ, ϑ0) =
∫ 1/2

−1/2
Tr(�(�) d[F(�, ϑ0) + F(�, ϑ) − F(�, ϑ0, ϑ) − F(�, ϑ, ϑ0)])

is the only part of Q(ϑ) which depends on ϑ. We shall require the following condition to ensure the existence of the
minimum, (see Robinson, 1972).

Condition 6 (R).

R(ϑ, ϑ0) > 0, ϑ ∈ �, ϑ 	= ϑ0.

Then we have the contrast function R for ϑ0

R(ϑ, ϑ0) > R(ϑ0) = 0.

Therefore we minimize the contrast process QT (ϑ) for R(ϑ0, ϑ). Obviously

lim
T →∞[QT (ϑ) − QT (ϑ0)] = R(ϑ0, ϑ).

The minimum contrast estimator ϑ̂T is the value which minimizes the value of QT (ϑ)

ϑ̂T = arg min
ϑ∈�

QT (ϑ).

One can easily see (using Magnus and Neudecker, 1999, Theorem 7, Chapter 7) under some additional assumptions
given below, that QT (ϑ) is convex since the Hessian HQ(ϑ0) is nonnegative definite. This shows that the next Theorem,
due to Robinson (1972), is indeed valid not only for a compact set �, but also for more general classes of parameters,
for example convex parameter sets � as well. The minimum contrast method is also called the quasi-likelihood and it
is very efficient in several cases even in non-Gaussian situations, for instance see Anh et al. (2004).

Theorem 7. Under the assumptions I-R (or G1–G4), and R, the minimum contrast estimator ϑ̂T converges a.s. to ϑ0.

2. Approximate sampling distributions of the estimates

For obtaining the sampling distribution it is necessary to consider the second derivatives of the SDFR and their
limits for the objective function, see Robinson (1972). The matrix of the second derivatives of ĈX,T (h, ϑ1, ϑ2) can be
calculated, by using the matrix differential calculus (Magnus and Neudecker, 1999)

�2ĈX,T (h, ϑ1, ϑ2)

�ϑT
2 �ϑT

1

= �

�ϑT
1

Vec

(
� Vec ĈX,T (h, ϑ1, ϑ2)

�ϑT
2

)
.

Here the differentiation of the RHS can be carried out directly. Notice, the order of the variables ϑ1, ϑ2 in ĈX,T , is
opposite to the order of the partial derivatives: �ϑT

2 �ϑT
1 . The later means that one differentiates first by ϑ2 and then by

ϑ1which operates on the right-hand side. Starting the differentiating by ϑ1, and then followed by ϑ2, it can be written
as ‘direct’ one

�2ĈX,T (h, ϑ1, ϑ2)

�ϑT
1 �ϑT

2

= (Kp·d ⊗ Ud)Kd·dp
�2ĈX,T (−h, ϑ2, ϑ1)

�ϑT
1 �ϑT

2

,

where we used the commutation matrix Kp·d , see Magnus and Neudecker (1999), ⊗ denotes the Kronecker product.
Here and elsewhere T stands for transpose. Here Ud is the d × d identity matrix. Following Hannan (1971) we assume
the following condition:

Condition 8 (H). All the second partial derivatives of the regressor Xt(ϑ) exist and �2ĈX,T (h, ϑ1, ϑ2)/�ϑT
2 �ϑT

1

converges to a limit, and let it be denoted by �2CX(h, ϑ1, ϑ2)/�ϑT
2 �ϑT

1 .
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It is necessary to emphasize that Condition H is

�2CX(h, ϑ1, ϑ2)

�ϑT
2 �ϑT

1

•= lim
T →∞

�2ĈX,T (h, ϑ1, ϑ2)

�ϑT
2 �ϑT

1

,

where the left-hand side is defined by the limit (which is the derivative of CX). Here and elsewhere we use the symbol
•= for the definition of the left side of an expression.

The above notation is used for the regression spectrum as well.

Condition 9 (I-R-H). The derivative �2FT (�, ϑ1, ϑ2)/�ϑT
1 �ϑT

2 , of the matrix function FT converges weakly to
�2F(�, ϑ1, ϑ2)/�ϑT

2 �ϑT
1 .

Again

�2F(h, ϑ1, ϑ2)

�ϑT
2 �ϑT

1

•= lim
T →∞

�2FT (�, ϑ1, ϑ2)

�ϑT
1 �ϑT

2

,

by definition. Using the above formulae for the derivatives we calculate the Hessian HF for the SDFR F as well.

Lemma 10. Assume Condition I-R-H, then

HF(�, ϑ) =
[
Hϑ1

F(�, ϑ1, ϑ2) + �2F(�, ϑ1, ϑ2)

�ϑT
1 �ϑT

2

+Hϑ2
F(�, ϑ1, ϑ2) + �2F(�, ϑ1, ϑ2)

�ϑT
2 �ϑT

1

]∣∣∣∣∣
ϑ1=ϑ2=ϑ

, (7)

where the indirect derivative satisfies

�2F(�, ϑ1, ϑ2)

�ϑT
1 �ϑT

2

= (Kp·d ⊗ Ud)Kd·dp
�2F(−�, ϑ2, ϑ1)

�ϑT
1 �ϑT

2

.

2.1. An expression for the asymptotic variance

For the variance of Vec �QT (ϑ0)/�ϑT consider the expression

Vec
�QT (ϑ)

�ϑT = 1

T

T1∑
k=−T1

[
� Vec IX,T (�k, ϑ)

�ϑT − �(Vec IY ,X,T (�k, ϑ) + Vec IX,Y ,T (�k, ϑ))

�ϑT

]T

× [Vec �T(�k)]. (8)

Let � be some matrix function of appropriate dimension, and introduce the following notation, which will be frequently
used:

J(�, F) =
∫ 1/2

−1/2
(Up ⊗ [Vec(�T(�k))]T) d

⎛⎝ �2F(�, ϑ1, ϑ2)

�ϑT
2 �ϑT

1

∣∣∣∣∣
ϑ1=ϑ2=ϑ0

⎞⎠ ,

where Up denotes the identity matrix of order p. The proof of the following lemma can be found in Subba Rao and
Terdik (2006).

Lemma 11.

lim
T →∞Var

[√
T Vec

�QT (ϑ0)

�ϑT

]
= 4J(�SZ�, F).
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The limit of the Hessian is calculated from (8). The Hessians according to the Hϑ1
IX,T (�k, ϑ1, ϑ2) and

Hϑ2
IX,T (�k, ϑ1, ϑ2) of the terms in (8) at ϑ1 = ϑ2 = ϑ0 will cancel with HϑIY ,X,T (�k, ϑ) and HϑIX,Y ,T (�k, ϑ),

respectively, so we have to deal only with the mixed derivatives of IX,T (�k, ϑ). Hence the Hessian of Q(ϑ) at ϑ = ϑ0
follows:

Lemma 12.

HQ(ϑ0) = lim
T →∞[HQT (ϑ0)] = 2J(�, F).

Notice that the matrix J = J(�SZ�, F) and the Hessian HQ(ϑ0) are the same except that the later one depends only
on �, i.e. HQ(ϑ0) = J(�, F). Put

JT = Var

[√
T Vec

�QT (ϑ0)

�ϑT

]
,

and suppose the following condition holds.

Condition 13 (R). The limiting form of the variance matrix given by J(�SZ�, F)=Var[√T Vec �QT (ϑ0)

�ϑT ], be positive

definite, for all admissible spectral density functions. SZ and SDFR F. Further suppose that J(�, F) > 0.

Theorem 14. Under the assumptions I-R, I-R-H and R

√
T J−1/2

T HQT (̂̂ϑ)(̂ϑT − ϑ0)
D→ N(0, Up),

where ̂̂ϑ is closer to ϑ0 than ϑ̂T . In other words

lim
T →∞Var[√T (̂ϑT − ϑ0)] = J−1(�, F)J(�SZ�, F)J−1(�, F)|ϑ=ϑ0

. (9)

The optimal choice of �(�) is S−1
Z (�) assuming SZ(�) > 0. The choice S−1

Z (�) is appropriate since the “residual”
series dZ,T (�k) are asymptotically independent Gaussian random vectors with variance matrix T SZ(�k). The covari-

ance matrix in this case (� = S−1
Z ) follows from (9)

lim
T →∞Var[√T (̂ϑT − ϑ0)] = J−1(S−1

Z , F), (10)

where

J−1(S−1
Z , F) =

⎡⎣∫ 1/2

−1/2
[Up ⊗ (Vec[S−1

Z (�)]T)T] d
�2F(�, ϑ1, ϑ2)

�ϑT
2 �ϑT

1

∣∣∣∣∣
ϑ1=ϑ2=ϑ0

⎤⎦−1

.

3. Scaling

Now we consider various regression models and obtain scaling factors for each. As our first special case, consider
the linear multivariate multiple regression model

Y t = BXt + Zt .

In this case ϑ=Vec B, so the regressor Xt depends on the parameter ϑ linearly, (Xt depends only on t). Here B is d ×p

and Xt is p × 1. If ‖Xk,t‖T � Dk(T ) which tends to infinity by Grenander’s condition G1, then the

ĈX,T (h, ϑ1, ϑ2) = 1

T

T −h∑
t=1

Xt+h(ϑ1)X
T
t (ϑ2)
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might not converge unless each Dk(T ) � √
T . This condition is not satisfied for polynomial regression models.

Grenander’s condition can be interpreted in the following way. Define the diagonal matrix DT =diag(D1, D2, . . . , Dp),
where Dk = Dk(T ) � ‖Xk,t‖T . Now, consider the new scaled regression model

Y t = B̃V t + Zt ,

where V t = √
T D−1

T Xt . We note

B̃V t =
(

1√
T

BDT

)
(
√

T D−1
T Xt ).

Therefore the asymptotic variance of the estimate of the parameter matrix B can now be written as

lim
T →∞Var

√
T (
̂̃B − B̃0) = lim

T →∞Var[(B̂ − B0)DT ].

We call this type of transformation as “primary” scaling. We observe that the procedure of scaling opens the possibility
of considering random regressors which are not necessarily weakly stationary because their second-order moments
may not exist (see Klüppelberg and Mikosch, 1996) or it may be asymptotically stationary.

Definition 15. The series Xt is properly scaled if

‖Xk,t‖2
T � T ,

as T → ∞, for each k = 1, 2, . . . , d.

In general, let Dk(T ) � ‖Xk,t‖T , for each k and define DT = diag(D1, D2, . . . , Dd), then it is easy to see that the
new regressor vector

√
T D−1

T Xt is properly scaled. The primary scaling of the nonlinear regressors Xt(ϑ) is possible
if Dk(T ) does not depend on the unknown parameter ϑ. Even if the regressors Xt(ϑ) are properly scaled, we may have
a new set of problems when we take the limit of the derivatives because there is no guarantee for the convergence of
the sums involved. Therefore we have to introduce some further scaling to the properly scaled regressors Xt(ϑ).

Consider first, the diagonal matrix DT = diag(DX,k(T ), k = 1, 2, . . . , d) and apply the scaling which results in√
T D−1

T Xt (ϑ). Another type of scaling can be obtained by the process of differentiation. We define the scaled partial

derivative �s,T (ϑ) of the diagonal matrix D1,T = diag(D
(1)
k (T ), k = 1, 2, . . . , p) by �(D−1

1,T ϑ), resulting

�

�s,T ϑT [D−1
T Xt (ϑ)] =

(
�

�ϑT [D−1
T Xt (ϑ)]

)
D−1

1,T , (11)

which gives

�

�s,T ϑT [D−1
T Xt (ϑ)] = D−1

T

[
�

�ϑT Xt(ϑ)

]
D−1

1,T .

Notice, the entries of the scaled partial derivatives are [DX,j (T )D
(1)
k (T )]−1�Xj,t (ϑ)/�ϑk . The scaled second derivatives

of ĈX,T (h, ϑ1, ϑ2) are given by

�2
s,T ĈDT X,T (h, ϑ1, ϑ2)

�s,T ϑT
2 �s,T ϑT

1

= (D−1
1,T ⊗ Ud2)

�2Ĉ√
T D−1

T X,T
(h, ϑ1, ϑ2)

�ϑT
2 �ϑT

1

D−1
1,T

= T (D−1
1,T ⊗ D−1

T ⊗ D−1
T )

�2ĈX,T (h, ϑ1, ϑ2)

�ϑT
2 �ϑT

1

D−1
1,T .

Note that 1/T in the expression of ĈX,T is canceled and the scaling factor has been absorbed completely by the scaling
matrices.
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Condition 16 (H ′). All the second partial derivatives of the regressor vector Xt(ϑ) exist. There exist diagonal matrices
DT and D1,T such that, uniformly in ϑ, the scaled derivative �2

s,T Ĉ√
T D−1

T X,T
(h, ϑ1, ϑ2)/�s,T ϑT

2 �s,T ϑT
1 converges to

a limit, which we denote it by �2
s CX(h, ϑ1, ϑ2)/�sϑ1�sϑ2.

The above condition H implies that

�2
s CX(h, ϑ1, ϑ2)

�sϑ
T
2 �sϑ

T
1

•= lim
T →∞

�2
s,T ĈDT X,T (h, ϑ1, ϑ2)

�s,T ϑT
2 �s,T ϑT

1

.

The diagonal matrices DT and D1,T can be chosen directly. In cases when the entries of the partial derivatives are
separable, i.e. when

‖�Xj,t (ϑ)/�ϑk‖T � BX,j (T )B
(1)
k (T ),

then DT = diag(BX,j (T ), k = 1, 2, . . . , d), and D1,T = diag(B
(1)
k (T ), k = 1, 2, . . . , p), say. Note here that the matrix

DT contains the factors of primary scaling. There may be regressors Xt(ϑ), which may require other forms of scaling.
The above notation is used for the regression spectrum as well.

Condition 17 (I-R-H ′). The scaled derivative �2
s,T FT (�, ϑ1, ϑ2)/�s,T ϑT

1 �s,T ϑT
2 , of matrix function FT converges

weakly to a function which we denote by �2
s F(h, ϑ1, ϑ2)/�sϑ

T
2 �sϑ

T
1 .

Define

JT (DT , �, F) =
∫ 1/2

−1/2
(Up ⊗ [Vec(DT �T(�k)DT )]T) d

⎛⎝ �2
s F(�, ϑ1, ϑ2)

�sϑ
T
2 �sϑ

T
1

∣∣∣∣∣
ϑ1=ϑ2=ϑ0

⎞⎠ .

Theorem 18. Under the conditions I-R and I -R-H ′ we have

√
T J−1/2

T Hs,T QT (ϑ0)D1,T (̂ϑT − ϑ0)
D→ N(0, Up).

In other words the variance of (̂ϑT − ϑ0) can be approximated by

D−1
1,T J−1

T (DT , �, F)JT (DT , �SZ�, F)J−1
T (DT , �, F)D−1

1,T |ϑ=ϑ0
.

Moreover if � = S−1
Z , one obtains the asymptotic variance in the concise form

D1,T J−1
T (DT , S−1

Z , F)D1,T .

We shall see in the next section that the linear regressors are scaled directly.

Remark 19. The spectrum SZ in general is not known, in which case it becomes a semiparametric problem, and
therefore one uses a recursive form for the estimation of the parameters. In such situations one notices that the additional
term to the function R in the objective function is the Whittle likelihood up to a constant.As long as we restrict to rational
spectral density functions, the methods of Hannan (1971) apply and both the estimator of the unknown parameter ϑ
and the estimator for the parameters of the spectrum are consistent.

4. Examples of regression models and their estimation

We now consider various interesting special models and discuss the asymptotic properties of the estimates.
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4.1. Multiple linear regression model with stationary errors

Consider once again the linear model

Y t = BXt + Zt .

Taking FFT both sides we obtain

dY,T (�) = BdX,T (�) + dZ,T (�).

Now the periodogram matrices we defined earlier for the above will now reduce to

IX,T (�k, ϑ) = BIX,T (�k)BT,

IY ,X,T (�k, ϑ) = IY ,X,T (�k)BT,

IX,Y ,T (�k, ϑ) = BIX,Y ,T (�k).

The normal equations are obtained by solving

�QT (B)

�B
= 0

and thus the estimates can be obtained. The expression for the variance–covariance matrix of the vector of the estimates
is (in the vectorized form)

Vec(B̂) =
⎛⎝ T1∑

k=−T1

ITX,T (�k) ⊗ �(�k)

⎞⎠−1

Vec
T1∑

k=−T1

�(�k)IY ,X,T (�k).

In cases when the inverse does not exist, one can use the generalized inverse. This estimate is linear and unbiased since

E
T1∑

k=−T1

�(�k)IY ,X,T (�k) = �(�k)B0IX,T (�k).

The Hessian of QT (B) is

HQT (B) = 1

T

T1∑
k=−T1

(ITX,T (�k) ⊗ �(�k) + IX,T (�k) ⊗ �T(�k))

=
∫ 1/2

−1/2
dFT(�) ⊗ �(�) + o (1).

The variance matrix of the estimate B̂

lim
T →∞Var

⎛⎝ 1√
T

Vec
T1∑

k=−T1

�(�k)IY ,X,T (�k)

⎞⎠= 4Vec
∫ 1/2

−1/2
dFT(�) ⊗ [�(�)SZ(�)�(�)].

We caution that we use the superscript T for transpose only, and not the sample size T which we use as a subscript. In
particular we have the expressions in both situations when the estimates are the ordinary LS estimates (when the errors
are independent) and also in the case of weighted least squares LS estimates. In the first case �(�) = Ud and in the
later case �(�) = S−1

Z (�) which leads to the best linear unbiased estimates, the BLUEs. Grenander (1954) has shown
that under certain assumptions asymptotically the LS and BLUE are equivalent. When such conditions are satisfied,
we have Var[√T Vec(B̂)] = [∫ 1/2

−1/2 dFT(�) ⊗ S−1
Z (�)]−1. This limit does not depend on B0. This result can also be

obtained from the general expression (10) for the variance.
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Remark 20. The estimation of the transpose of the matrix B is used more often in time domain (see Hannan, 1970).
Then the variance of Vec (B̂T) follows from (12) easily

Var[√T Vec(B̂T)] = Var[Kp·d Vec(B̂)]
= Kp·dVar Vec(B̂)Kd·p,

hence

lim
T →∞Var[√T Vec(B̂T)] =

[∫ 1/2

−1/2
S−1

Z (�) ⊗ dFT(�)

]−1

.

In practice, we are interested in the asymptotic variance of B̂ of the original unscaled regressors. Since we have an
estimate of the matrix (1/

√
T )BDT , writing

BXt =
(

1√
T

BDT

)√
T D−1

T Xt ,

we get the asymptotic variance of Vec B̂ to be[∫ 1/2

−1/2
DT dFT(�)DT ⊗ S−1

Z (�)

]−1

, (12)

(see also Hannan, 1970, Theorem 10, Chapter VII). For instance, if we consider the polynomial regressors of the form
Xj,t = tj−1, j = 1, , . . . , p, then the corresponding scaling factors we should use are Tj (T ) � √

T 2j−1/(2j − 1)

(this later one applies for any fractional j > 1/2 as well), and DT = diag(T1, T2, . . . Td). In this case the SDFR F is
concentrated at zero with values dFj,k(0) = √

(2k − 1)(2j − 1)/(k + j − 1), so the asymptotic variance of Vec B̂ is

[D−1
T dF−1(0)D−1

T ] ⊗ SZ(0), (13)

(see Grenander and Rosenblatt, 1957, p. 247, for scalar valued case).

4.2. A mixed model involving parameters both linearly and nonlinearly

An interesting model which one comes across very often, is when the regression function is linear and also contains
a nonlinear part of the type

Y t = Xt(ϑ0) + Zt ,

where

Xt(ϑ) = B1X1,t + B2X2,t (�)

= [B1, B2]
[

X1,t

X2,t (�)

]
= BX3,t (�). (14)

Here the unknown parameter ϑ=Vec(Vec B1, Vec B2, �), where B1 is d×p, B2 is d×q, � is r×1, X1,t is of dimension

p, X2,t (�) is of dimension q, B = [B1, B2] and X3,t (�) =
[

X1,t

X2,t (�)

]
. First we consider the problem of estimation, by

minimizing the objective function

QT (B, �) = 1

T

T1∑
k=−T1

[Tr(IY ,T (�k)�(�k)) + Tr(BIX3,T
(�k, �)BT�(�k))

− Tr(IY ,X3,T
(�k, �)BT�(�k)) − Tr(BIX3,Y ,T (�k, �)�(�k))]. (15)
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Now, differentiate with respect to B1, B2 and �. We can apply the linear methods for B in terms of X3,t (�). Suppose

that the B̂ = [B̂1, B̂2] and �̂, satisfies the system of equations

�QT (B, �)

�B
= 0,

Vec
�QT (�)

��T = 0.

The estimation of the linear parameters B1 and B2 can be carried out as in linear regression when the parameter � is
fixed. It leads to a recursive procedure. When we first set � = �̃ (chosen), the normal equations result in

Vec(B̂) =
⎛⎝ T1∑

k=−T1

ITX3,T
(�k, �̃) ⊗ �(�k)

⎞⎠−1

Vec
T1∑

k=−T1

�(�k)IY ,X3,T
(�k, �̃).

Now, to obtain the estimates for �, we keep B = B̂ fixed and then minimize (15), i.e. find the solution to the equation

T1∑
k=−T1

[
�BIX3,T

(�k, �)BT

��T − �IY ,X3,T
(�k, �)BT

��T − �BIX3,Y ,T (�k, �)

��T

]T

�=�̂

Vec �T(�k) = 0.

The primary scaling of X3,t (�)=
[

X1,t

X2,t (�)

]
, is given by DT =diag(DX1,T , DX2,T ) where DX1,T =diag(DX1,k(T ), k=

1, 2, . . . , p), and DX2,T = diag(DX2,k(T ), k = 1, 2, . . . , q). The secondary scaling of the regressors are D1,T =
diag(Udp+dq, D3,T ). Denoting the limit of the variance–covariance of the derivatives⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
�QT (B1, B2, �)

� Vec BT
1

]T

[
�QT (B1, B2, �)

� Vec BT
2

]T

[
�QT (B1, B2, �)

��T

]T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
by

� = 2

[ �11 �12 �1�D3,T

�21 �22 �2�D3,T

D3,T ��1 D3,T ��2 D3,T ���D3,T

]
,

where the blocks of � contain already the scaling DT of the regressor, (this includes the case when � = S−1
Z ). The part

that is linear in parameters results in

�11 =
∫ 1/2

−1/2
DX1,T dFT

11(�)DX1,T ⊗ S−1
Z (�),

�12 =
∫ 1/2

−1/2
DX2,T dFT

12(�, �0)DX1,T ⊗ S−1
Z (�),

�22 =
∫ 1/2

−1/2
DX2,T dFT

22(�, �0)DX2,T ⊗ S−1
Z (�).
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In the mixed model context we get

�1� =
∫ 1/2

−1/2
(DX1,T ⊗ S−1

Z (�)B2,0DX2,T ) d
�F1,2(�, �0)

��T ,

�2� =
∫ 1/2

−1/2
(DX2,T ⊗ S−1

Z (�)B2,0DX2,T ) d
�F2,2(�, �0)

��T .

The following nonlinear block matrix ��� comes from the general result (10)

��� = 2
∫ 1/2

−1/2
(Ur ⊗ Vec([DX2,T BT

2,0S−1
Z (�)B2,0DX2,T ]T)T) d

�2F2,2(�, �1, �2)

��T
2 ��T

1

∣∣∣∣∣
�1=�2=�0

.

Finally the variance matrix of the estimates Vec(Vec B̂1,Vec B̂2, �̂) is

Var[ Vec(Vec B̂1, Vec B̂2, �̂)] �
[ �11 �12 �1�D3,T

�21 �22 �2�D3,T

D3,T ��1 D3,T ��2 D3,T ���D3,T

]−1

.

4.3. Some special examples of interest: a model with linear trend and with harmonic components

Here we consider a special case of the mixed model mentioned above. We give some detailed calculations to illustrate
the methodology. As this model will be used later to demonstrate our methods on real data (here d = 2). Let

Y t = Xt(ϑ0) + Zt ,

where

Xt(ϑ) = B
[

1
t

]
+ A

⎡⎢⎣
cos(2�t�1)

sin(2�t�1)

cos(2�t�2)

sin(2�t�2)

⎤⎥⎦ . (16)

The parameter is ϑT = ([Vec B1]T, [Vec B2]T, [�1, �2]), |�i |��, �1 	= �2, �i 	= 0, ±1/2. It is readily seen that the
estimation of the coefficient matrix B of the linear regression is given by

B =
[
b11 b12
b21 b22

]
.

We see later that we can estimate B independently of A given by

A =
[
a11 a12 a13 a14
a21 a22 a23 a24

]
.

The primary scaling for X1,t is DX1,T
= diag(T 1/2, T 3/2/

√
3), and for X2,t (�) is DX2,T

= T 1/2/
√

2U4, since X1,t =
[1, t]T and X2,t (�) = [cos(2�t�1), sin(2�t�1), cos 2�t�2, sin(2�t�2)]. The secondary scaling for the linear part X1,t

as we have already seen is U2, and the secondary one for the nonlinear part is U4 and the scaled partial derivatives
corresponding to � is D3,T = 2�T/

√
3U2 since the primary scaling

√
T/2 has already been applied. Therefore the

scaling matrix DT of the regressors [XT
1,t , X

T
2,t (�)]T is DT = diag(DX1,T

, DX2,T
), and D1,T = diag(U12, D3,T ). The

asymptotic variance is therefore given by

D−1
1,T J−1(DT S−1

Z DT , F)D−1
1,T .

In general, the proper scaling for the term Xk,tXm,t+h in ĈX,T is 1/(‖Xk,t‖T ‖Xm,t‖T ). Here it can be changed into
an equivalent function of T, instead of (2) we have

ĈX,T (h, ϑ1, ϑ2) = D−1
T

T −h∑
t=1

Xt+h(ϑ1)X
T
t (ϑ2)D

−1
T .
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Using obvious notation, we partition the second derivative of SDFR according to the parameters

�2F(�, �1, �2)

��T
2 ��T

1

=
[F11 F12 F1�

F21 F22 F2�
F�1 F�2 F��

]
.

Assume �1 	= �2, �i 	= 0, ±1/2.

(1) The regression spectrum of the linear part

dF11(�) =
[

1
√

3/2√
3/2 1

]
d���0,

where ���0 denotes the Kronecker delta. Hence the block �11 reduces to

�11 = DX1,T
dF11(0)DX1,T

⊗ S−1
Z (0).

(2) It is seen here that the mixed model parameters has no effect, F12(�, �0)=0, �12 =0, and F1�(�, �0)=0, �1�=0.
(3) The F22(�, �0) corresponds to the coefficient A. Let

H1h(�) =
[

cos(2��h) − sin(2��h)

sin(2��h) cos(2��h)

]
.

Notice

ĈX2,T
(h, �, 	) = D−1

X2,T

T −h∑
t=1

X2,t+h(�)XT
2,t (	)D−1

X2,T

→
[

��1=	1
H1h(�1) ��1=	2

H1h(�1)

��2=	1
H1h(�2) ��2=	2

H1h(�2)

]
,

where ��=� denotes the Kronecker delta. Define the step functions

gc�(�) =
{0, � < − �,

1
2 , −��� < �,

1, ���,

gs�(�) =
{0, � < − �,

i/2, −��� < �,

0, ���,

and

G1�(�) =
[
gc�(�) −gs�(�)

gs�(�) gc�(�)

]
.

Now we have

lim
T →∞ ĈX2,T

(h, �, 	) =
∫ 1/2

−1/2
exp(i 2��h) dF22(�, �, 	),

where

F22(�, �, 	) =
[

��1=	1
G1�1(�) ��1=	2

G1�1(�)

��2=	1
G1�2(�) ��2=	2

G1�2(�)

]
.

The scaled version of the block is

�22 =
∫ 1/2

−1/2
(DX2,T dFT

22(�, �0)DX2,T ) ⊗ S−1
Z (�)

= T/2

⎡⎢⎣
[

Re S−1
Z (�1) Im S−1

Z (�1)

−Im S−1
Z (�1) Re S−1

Z (�1)

]
0

0
[

Re S−1
Z (�2) Im S−1

Z (�2)

−Im S−1
Z (�2) Re S−1

Z (�2)

]
⎤⎥⎦ .
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(4) For F2�(�, �0), define the matrices

U2(1) =
[

1 0
0 0

]
,

U2(2) =
[

0 0
0 1

]
,

then we have

√
3

2�T

� Vec ĈX2,X2,T
(h, �, 	)

�	T →
√

3

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

��1=	1
U2(1) ⊗

[− sin(2��1h)

cos(2��1h)

]
��1=	2

U2(1) ⊗
[− cos(2��1h)

− sin(2��1h)

]
��2=	1

U2(2) ⊗
[− sin(2��2h)

cos(2��2h)

]
��2=	2

U2(2) ⊗
[− cos(2��2h)

− sin(2��2h)

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Notice, if � = 	 and �1 	= �2 then this later matrix is written

[Vec[U2(1) ⊗ H2h(�1)], Vec[U2(2) ⊗ H2h(�2)]],
where

H2h(�) =
[− sin(2��h) − cos(2��h)

cos(2��h) − sin(2��h)

]
.

Suppose we have now three frequencies � = [�1, �2, �3] then we would have

[Vec[U3(1) ⊗ H2h(�1)], Vec[U3(2) ⊗ H2h(�2)], Vec[U3(3) ⊗ H2h(�3)],
where U3(j) is a 3 × 3 matrix with zero elements except the j th entry in the diagonal which is 1.

F2�(�, �) =
√

3
2 [Vec[U2(1) ⊗ G2�1(�)], Vec[U2(2) ⊗ G2�2(�)]],

where

G2�(�) =
[−gs�(�) −gc�(�)

gc�(�) −gs�(�)

]
.

Applying the general formula for �2�, see Section 4.2,

�2� =
∫ 1/2

−1/2
(U4 ⊗ S−1

Z (�)A0DX2,T
)(DX2,T

⊗ U4) dF2�(�, �0)

= T

2

∫ 1/2

−1/2
(U4 ⊗ S−1

Z (�)A0) dF2�(�, �0).

Put


2 =
[

i −1
1 i

]
,

�2(�) = U4 ⊗ S−1
Z (�)A0,

�2� =
√

3T

4
[�2(�1) Vec[U2(1) ⊗ 
2], �2(�2) Vec[U2(2) ⊗ 
2]].
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(5) Finally, F��(�, �0) reduces to

3

(2�)2T 2

�2 Vec ĈX2,T
(h, �, 	)

�	T��T →

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

��1=	1
U2(1) ⊗

[
cos(2��1h)

sin(2��1h)

]
��1=	1

U2(1) ⊗
[− sin 2��1h

cos(2��1h)

]
016×2

��2=	2
U2(2) ⊗

[
cos(2��2h)

sin(2��2h)

]
��2=	2

U2(2) ⊗
[− sin(2��2h)

cos(2��2h)

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Define now the matrix U2,4(1, 1) of 2 × 4 with all element zero except the entry (1, 1) which is one. Then we have

[Vec[U2,4(1, 1) ⊗ H3h(�1)], Vec[U2,4(2, 4) ⊗ H3h(�2)]],
where

H3h(�) =
[

cos(2��h) − sin(2��h)

sin(�2�h) cos(2��h)

]
.

The SDFR is given by

F��(�, �) = (2�)2[Vec[U2,4(1, 1) ⊗ G3�1(�)], Vec[U2,4(2, 4) ⊗ G3�2(�)]],
where

G3�(�) =
[
gc�(�) −gs�(�)

gs�(�) gc�(�)

]
.

The corresponding variance matrix is

��� = T

2

∫ 1/2

−1/2

(
U2 ⊗ Vec[AT[S−1

Z (�)]TA]T
)

dF��(�, �)

= T

2

∫ 1/2

−1/2

[ [Vec(AT[S−1
Z (�)]TA)]T 01×16

01×16 [Vec(AT[S−1
Z (�)TA)]T

]
dF��(�, �).

For computational purposes, set


3 =
[

1 i

−i 1

]
,

�(�) = U2 ⊗ [Vec(AT[S−1
Z (�)]TA)]T,

then the variance matrix has the form

��� = (2�)2 T

2
Re [�(�1) Vec[U2,4(1, 1) ⊗ 
3], �(�2) Vec[U2,4(2, 4) ⊗ 
3]].

After further simplification

��� = T

2

[
�11 0
0 �22

]
,

the entries are given in terms of the entries Amn(�) = [AT[S−1
Z ]TA]mn,

�11 = Re A11(�1) + Im A21(�1) − Im A12(�1) + Re A22(�1),

�22 = Re A33(�2) + Im A43(�2) − Im A34(�2) + Re A44(�2).



3810 Gy. Terdik et al. / Journal of Statistical Planning and Inference 137 (2007) 3793–3814

Now we return to the asymptotic variance matrix of the estimated parameters. Collecting the blocks of the variance
matrix

D1,T

[�11 0 0
0 �22 �2�
0 ��2 ���

]
D1,T ,

where D1,T = diag(U12, D2,T ). The variance matrix of the coefficient Â

2

T
(�′

22 − �′
2��

′−1
�� �′

�2)
−1,

and of �̂

D−1
3,T (��� − ��2�

−1
22 �2�)

−1D−1
3,T = 6

(2�)2T 3
(�′

�� − �′
�2�

′−1
22 �′

2�)
−1,

where D3,T = 2�T/
√

3U12, and �′ denotes the covariance matrix without scaling. The speed of convergence of the
variance matrix of the coefficient Â is T/2 and the frequency �̂ is (2�)2T 3/6.

5. Applications to real data analysis: I. Chandler Wobble

5.1. Data description

The Chandler Wobble, named after its 1891 discoverer, Seth Carlo Chandler, Jr., is one of several wobbling motions
exhibited by Earth as it rotates on its vertical axis, similar to a spinning top. It has been estimated by several researchers
using different models and methods (see, for instance Brillinger, 1973; Arató et al., 1962) and the period of this wobble
is known to be approximately between 430 and 435 days. Some properties of the monthly data have been described in
Iglói and Terdik (1997).

Since 1995, an integrated solution to the various GPS (Global Positioning System) series has been available. For
our current analysis, we use the hourly measurements between Modified Julian Day (MJD) 49719 (corresponding to
January 1, ’95) and MJD 50859 (corresponding to February 15, ’98). The values of the data are given in milli-arcseconds
or MAS, where 1 arcsec ∼ 30 m. The number of data points are T = 27, 361.

Rotational variations of polar motion are due to the superposition of the influences of six partial tides. Different
techniques suggest that these are real oscillations of polar motion. Rapid oscillations with periods of 12 h has already
been considered, see IVS 2004 General Metting Proceedings (2005), Gross (2000).
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The aim of our investigation is to provide statistical evidence for the presence of 12 h oscillation, i.e. to show that
the frequency 2�/12 is statistically significant. Also another question of interest is whether there is any significant shift
in the position of the center.

One model that has been considered (see Schuh et al., 2001), has both a linear trend term as well as some harmonic
components (usually termed as drift, offset and elliptical periodic motions parameters),

Y t = B2×2

[
1
t

]
+ A4×2

⎡⎢⎣
cos(2�t�1)

sin(2�t�1)

cos(2�t�2)

sin(2�t�2)

⎤⎥⎦+ Zt ,

where Y t is the measurement vector corresponding to the polar coordinates of the position. The matrices A and B
together with the frequencies �i , (|�i |��) are unknown and are to be estimated. This model is a special case of the
nonlinear model we considered in this paper. We start the computations with the initial values �1 = 2�/410/24, and
�2 = 2�/12, and the number of Fourier frequencies we used are 213. The estimates of the parameters are found to be

B̂ =
[

41.6043 0.0003
323.4485 −0.0007

]
,

Â =
[−244.8065 16.5279 0.1248 −0.0521

25.3854 256.5682 0.0166 0.1064

]
,

and

�̂ =
[

0.0001
0.0833

]
.

The estimated frequencies correspond to the periods 410.5626 days and 11.9999 h which are close to the estimates
obtained by many geophysicists.

5.2. II. Minimum and maximum monthly temperatures in the Antarctic Peninsula

It is now widely believed that there is a Global warming, and especially a major warming has been happening
over the last 50 years in Antarctica. Though there is an increase in temperature at a majority of the stations in the
Antarctica, Turner et al. (2005), have found a very significant increase in the monthly average surface temperatures at
Faraday/Vernadsky station in the Antarctic Peninsula. Using linear LS methodology (under Gaussianity assumption)
they conclude that the increase is of the order of 0.56 ◦C per decade historically and 1.09 ◦C per decade over the winter
during the last 50 years. There is evidence of strong temporal dependence in the observations and also the data are not
Gaussian. In view of this, it is obvious that their methodology does not lead to good estimates. Recently Hughes et al.
(2006), have considered the monthly minimum/maximum temperatures observed during January 1951–December 2004
and they have analyzed the data using linear time series models where the innovations have extreme value distributions.
They conclude that there is a significant increase in minimum temperatures, but the increase is not statistically significant
in the time-series on maximum temperatures. This conclusion is very important, as any increase in temperatures in
winter months can result in melting of ice shelves, glaciers and increase in sea levels. They have analyzed the two data
sets separately, even though there is dependence between the minimum and maximum temperatures in a given month.
This suggests that we should perform a joint analysis using multivariate multiple regression methodology. However, we
note that minimum and maximum have two distinct distributions, and as such, the classical time domain methodology
may not be that appropriate (Figs. 1 and 2). Therefore the methodology we developed in this paper is very appropriate
and we use the model and analysis suggested in Section 4.3. Since it is widely believed that the ozone levels in the
Antarctica have an affect on temperatures (see Hughes et al., 2006), we include this as our third explanatory variable
(Fig. 3). The data we analyze here are monthly minimum, maximum temperatures and also ozone levels observed at
Faraday/Vernadsky station during the period Jan 1958–Dec 2004. The ozone levels are measured in Dobson units. The
plots of the data are given below.

The model we fitted is a linear trend model for the three variables with three known periodicities, and they are 12
months, 6 months and 4 months). We found these periods using the classical periodogram methodology. In the present
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Fig. 1. Monthly minimum temperatures.
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Fig. 2. Monthly maximum temperatures.

context, the matrix B is of order 3 × 2, the matrix A is of order 3 × 6, (16). The estimates of these coefficients and their
standard errors (in brackets) calculated using the formula (13), are given in Table 1.

From these results, we see that the increase in minimum temperatures (trend coefficient = 0.0139) is highly sig-
nificant, and also the decrease in ozone levels, but there is no significant increase in the maximum temperatures. The
results are somewhat similar to those reported by Hughes et al. (2006), where they assumed that the errors are cor-
related and Gaussian. However, there is some difference in the estimates (and their standard errors) when they fitted
a linear model with converse extreme value distribution. The estimates obtained by them using maximum likelihood
methodology, have smaller standard errors, as one would expect. By comparing the results obtained here with those of
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Fig. 3. Monthly ozone levels.

Table 1
Estimates of the parameters

Minimum Maximum Ozone levels

Constant −16.8014 4.5228 342.6448
Linear trend 0.0139 (0.0051) 0.0006 (0.0009) −0.158 (0.0201)
sin(2�t/12) 9.1013 (0.4512) 1.3126 (0.1325) −0.2592 (0.1618)
cos(2�t/12) 5.0523 (0.4512) 1.5558 (0.1325) 9.4127 (0.1618)
sin(2�t/6) 0.0399 (0.1072) 0.2334 (0.0735) −5.1302 (0.0913)
cos(2�t/6) 1.87 (0.1072) −0.22 (0.0735) 15.7086 (0.0913)
sin(2�t/4) 0.0401 (3.9718) −0.0747 (1.9769) −5.8617 (1.5507)
cos(2�t/4) 0.3352 (3.9718) 0.2137 (1.9769) 2.1319 (1.5507)

Hughes et al. (2006), we observe that the estimates obtained here are very close to Gaussian estimates, although our
estimates are obtained without any restrictive assumption on the errors.
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